大型深度神经网络的联合培训通常可以受到限制,因为将更新与增加模型大小进行交流的成本增加。在集中设置中设计了各种模型修剪技术,以减少推理时间。将集中的修剪技术与联合培训相结合似乎是降低沟通成本的直观 - 通过在沟通步骤之前修剪模型参数。此外,在培训期间,这种渐进的模型修剪方法也可以减少培训时间/成本。为此,我们提出了FedSparsify,该公司在联合培训期间执行模型修剪。在我们在集中式和联合的设置中对大脑年龄预测任务的实验(估计一个人的年龄从大脑MRI估算),我们证明,即使在具有高度异构数据的高度异质数据的挑战性的联盟学习环境中,也可以将模型最多可修剪高达95%的稀疏性,而不会影响表现。分布。模型修剪的一个令人惊讶的好处是改进的模型隐私。我们证明,具有高稀疏性的模型不太容易受到会员推理攻击的影响,这是一种隐私攻击。
translated by 谷歌翻译
联合学习(FL)可以通过各种不同远程数据源的机器学习模型的分布式计算,而无需将任何单独的数据传输到集中位置。这导致改进的模型的完全性,并且随着更多来源和较大的数据集被添加到联合中的计算和计算的有效缩放。然而,最近的成员攻击表明,当模型参数或摘要统计数据与中央站点共享时,有时可以泄露或推断出私有或敏感的个人数据,需要改进的安全解决方案。在这项工作中,我们提出了一种使用全同性全相治(FHE)的安全FL框架。具体而言,我们使用CKKS构造,近似浮点兼容方案,这些方案受益于密文包装和重新扫描。在我们对大型脑MRI数据集的评估中,我们使用建议的安全流动框架来培训深度学习模型,以预测分布式MRI扫描的一个人的年龄,一个共同的基准测试任务,并证明在学习表现中没有降级在加密和非加密的联合模型之间。
translated by 谷歌翻译
在某些情况下,与机器学习问题有关的数据分布在多个位置,这些位置由于监管,竞争力或隐私原因无法共享数据。需要将数据复制到单个位置的机器学习方法受到数据共享挑战的阻碍。联合学习(FL)是一种在孤岛上所有可用数据的联合模型的有前途的方法。在许多情况下,参与联邦的站点具有不同的数据分布和计算功能。在这些异质环境中,现有的方法表现出较差的性能:同步FL协议是有效的,但学习收敛缓慢,能源成本高;相反,异步FL协议具有更快的收敛性,其能源成本较低,但沟通较高。在这项工作中,我们引入了一种新型的节能半同步联合学习方案,该协议将本地模型定期与最小的闲置时间和快速收敛混合在一起。我们通过在计算机视觉域以及现实世界中生物医学设置中建立的基准数据集进行了广泛的实验,我们的方法在数据和计算异质环境中的先前工作显着优于先前的工作。
translated by 谷歌翻译
Real-world robotic grasping can be done robustly if a complete 3D Point Cloud Data (PCD) of an object is available. However, in practice, PCDs are often incomplete when objects are viewed from few and sparse viewpoints before the grasping action, leading to the generation of wrong or inaccurate grasp poses. We propose a novel grasping strategy, named 3DSGrasp, that predicts the missing geometry from the partial PCD to produce reliable grasp poses. Our proposed PCD completion network is a Transformer-based encoder-decoder network with an Offset-Attention layer. Our network is inherently invariant to the object pose and point's permutation, which generates PCDs that are geometrically consistent and completed properly. Experiments on a wide range of partial PCD show that 3DSGrasp outperforms the best state-of-the-art method on PCD completion tasks and largely improves the grasping success rate in real-world scenarios. The code and dataset will be made available upon acceptance.
translated by 谷歌翻译
Transformers are becoming increasingly popular due to their superior performance over conventional convolutional neural networks(CNNs). However, transformers usually require a much larger amount of memory to train than CNNs, which prevents their application in many low resource settings. Local learning, which divides the network into several distinct modules and trains them individually, is a promising alternative to the end-to-end (E2E) training approach to reduce the amount of memory for training and to increase parallelism. This paper is the first to apply Local Learning on transformers for this purpose. The standard CNN-based local learning method, InfoPro [32], reconstructs the input images for each module in a CNN. However, reconstructing the entire image does not generalize well. In this paper, we propose a new mechanism for each local module, where instead of reconstructing the entire image, we reconstruct its input features, generated from previous modules. We evaluate our approach on 4 commonly used datasets and 3 commonly used decoder structures on Swin-Tiny. The experiments show that our approach outperforms InfoPro-Transformer, the InfoPro with Transfomer backbone we introduced, by at up to 0.58% on CIFAR-10, CIFAR-100, STL-10 and SVHN datasets, while using up to 12% less memory. Compared to the E2E approach, we require 36% less GPU memory when the network is divided into 2 modules and 45% less GPU memory when the network is divided into 4 modules.
translated by 谷歌翻译
Dense prediction tasks such as segmentation and detection of pathological entities hold crucial clinical value in the digital pathology workflow. However, obtaining dense annotations on large cohorts is usually tedious and expensive. Contrastive learning (CL) is thus often employed to leverage large volumes of unlabeled data to pre-train the backbone network. To boost CL for dense prediction, some studies have proposed variations of dense matching objectives in pre-training. However, our analysis shows that employing existing dense matching strategies on histopathology images enforces invariance among incorrect pairs of dense features and, thus, is imprecise. To address this, we propose a precise location-based matching mechanism that utilizes the overlapping information between geometric transformations to precisely match regions in two augmentations. Extensive experiments on two pretraining datasets (TCGA-BRCA, NCT-CRC-HE) and three downstream datasets (GlaS, CRAG, BCSS) highlight the superiority of our method in semantic and instance segmentation tasks. Our method outperforms previous dense matching methods by up to 7.2 % in average precision for detection and 5.6 % in average precision for instance segmentation tasks. Additionally, by using our matching mechanism in the three popular contrastive learning frameworks, MoCo-v2, VICRegL and ConCL, the average precision in detection is improved by 0.7 % to 5.2 % and the average precision in segmentation is improved by 0.7 % to 4.0 %, demonstrating its generalizability.
translated by 谷歌翻译
This paper extends quantile factor analysis to a probabilistic variant that incorporates regularization and computationally efficient variational approximations. By means of synthetic and real data experiments it is established that the proposed estimator can achieve, in many cases, better accuracy than a recently proposed loss-based estimator. We contribute to the literature on measuring uncertainty by extracting new indexes of low, medium and high economic policy uncertainty, using the probabilistic quantile factor methodology. Medium and high indexes have clear contractionary effects, while the low index is benign for the economy, showing that not all manifestations of uncertainty are the same.
translated by 谷歌翻译
Automatic fake news detection is a challenging problem in misinformation spreading, and it has tremendous real-world political and social impacts. Past studies have proposed machine learning-based methods for detecting such fake news, focusing on different properties of the published news articles, such as linguistic characteristics of the actual content, which however have limitations due to the apparent language barriers. Departing from such efforts, we propose FNDaaS, the first automatic, content-agnostic fake news detection method, that considers new and unstudied features such as network and structural characteristics per news website. This method can be enforced as-a-Service, either at the ISP-side for easier scalability and maintenance, or user-side for better end-user privacy. We demonstrate the efficacy of our method using data crawled from existing lists of 637 fake and 1183 real news websites, and by building and testing a proof of concept system that materializes our proposal. Our analysis of data collected from these websites shows that the vast majority of fake news domains are very young and appear to have lower time periods of an IP associated with their domain than real news ones. By conducting various experiments with machine learning classifiers, we demonstrate that FNDaaS can achieve an AUC score of up to 0.967 on past sites, and up to 77-92% accuracy on newly-flagged ones.
translated by 谷歌翻译
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
translated by 谷歌翻译
Can a text-to-image diffusion model be used as a training objective for adapting a GAN generator to another domain? In this paper, we show that the classifier-free guidance can be leveraged as a critic and enable generators to distill knowledge from large-scale text-to-image diffusion models. Generators can be efficiently shifted into new domains indicated by text prompts without access to groundtruth samples from target domains. We demonstrate the effectiveness and controllability of our method through extensive experiments. Although not trained to minimize CLIP loss, our model achieves equally high CLIP scores and significantly lower FID than prior work on short prompts, and outperforms the baseline qualitatively and quantitatively on long and complicated prompts. To our best knowledge, the proposed method is the first attempt at incorporating large-scale pre-trained diffusion models and distillation sampling for text-driven image generator domain adaptation and gives a quality previously beyond possible. Moreover, we extend our work to 3D-aware style-based generators and DreamBooth guidance.
translated by 谷歌翻译